JOURNAL OF COMBINATORIAL THEORY, Series B 62, 199-212 (1994)

An Orientation Theorem for Graphs
A. M. H. GErRARDS*'*

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
Received July 6, 1988

We characterize the class of graphs in which the edges can be oriented in such
a way that going along any circuit in the graph, the number of forward edges minus
the number of backward edges is equal to 0, 1, or —1. The result follows by
applying Tutte’s characterization of regular matroids to a certain binary matroid
associated to a graph.  © 1994 Academic Press, Inc.

1. AN ORIENTATION THEOREM

A directed graph D= (V(D), A(D)) has discrepancy k if for each circuit
C in D the number of forward arcs and the number of backward arcs differ
by at most k. An orientation of an undirected graph G = (V(G), E(G)) is a
directed graph D obtained from G by replacing each edge in G by a
directed edge (arc). Obviously a graph G has an orientation of discrepancy
0 if and only if G is bipartite. In this paper we extend this fact to the
following.

ORIENTATION THEOREM. Let G be an undirected graph. Then the
Sollowing are equivalent:

(i) G has an orientation of discrepancy 1;
(ii) G contains neither an odd-K, nor an odd-K3 as a subgraph.

Here an odd-K, and an odd-K3 are undirected graphs as depicted in
Fig. 1.

Clearly, an orientation of discrepancy 1 is never unique: reversing the
orientation of all the arcs in a directed cut—called directed-cut switching—
preserves the discrepancy. Also total switching, reversing the orientation of
all the arcs, does not change the discrepancy. The same is true if we apply
block switching, that is, the a total switching of a single block of G. Recall
that a block (or 2-connected component) of G is an equivalence class of the
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FiG. 1. Dashed and dotted lines denote pairwise openly disjoint paths. Dashed lines
correspond to paths with at least one edge, whereas dotted lines may have length 0. The word
odd in a face indicates that the length of the bounding circuit is odd.

equivalence relation on E(G) in which two edges are related if there exists
a circuit containing both. Two orientations are switching equivalent if one
can be obtained from the other by a series of block switchings and
directed-cut switchings.

UNIQUENESS THEOREM.  All orientations of discrepancy 1 in an undirected
graph G are switching equivalent.

The proof of the Orientation Theorem is in Section 2, and of the Unique-
ness Theorem in Section 3. In Section 4 we consider the problem of actually
finding an orientation of discrepancy 1 and the problem of checking
whether a given orientation has discrepancy 1. In Section 5 we discuss
some applications of the Orientation Theorem. Finally, in Section 6, we
state a dual version of the Orientation Theorem.

2. PROOF OF THE ORIENTATION THEOREM

We prove the Orientation Theorem by applying Tutte’s forbidden minor
characterization of regular matroids [15] to a certain binary matroid,
&(G), associated with a graph G. Therefore we present in Section 2.1 a
short introduction to notions relevant for Tutte’s Theorem. As the class of
binary matroids &(G) is not closed under taking minors, we extend in
Section 2.2 our domain from “graphs” to “signed graphs.”

2.1. Binary and Regular Matroids

A matroid is binary if it is representable by the columns of a binary
matrix, ie., a matrix with entries in GF(2). A matroid is regular if it is
representable over the reals by a unimodular matrix with full row rank.
(An m x n matrix is unimodular if all its enties are integral and all its m x m
subdeterminants are 0, 1, or —1. A matrix is totally unimodular if all its
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subdeterminants are 0, 1, or —1.) Regular matroids are binary. (The reduc-
tion modulo 2 of a unimodular representation of full row rank, yields a
binary representation of the same matroid.) But not all binary matroids are

regular. In particular the following two binary matrices represent non-
regular matroids (F,, FF, respectively):

0
1
0

-0 O

(F7).

—
— O = =
—_ = O
p—t —_ = O
O O O =
- O O O

0 0

The gist of Tutte’s Theorem is that in a sense the two examples above are
the only nonregular binary matroids. To express precisely what we mean
by that, we recall the notion of minors. (We restrict ourselves to represen-
table matroids.)

Let # be a matroid represented over some field & by matrix M. If
e € J then m, denotes the column of M corresponding to e.

Deleting e. Let M' be obtained from M by deleting m,. The matroid
M \e, obtained from .4 by deleting e, is the matroid represented by
M'. (Note that .#\e, depends only on .# and e, not on the actual
representation M.)

Contracting e. Let M’ be obtained from M by row operations (=adding
rows to other rows and scaling rows, ie., multiplying them with scalars)
such that m/ is a unit column or m,=0. Let M" be obtained from M’ by
deleting m/, and the row of M’ containing a 1 in m,. The matroid .#/e,
obtained from .# by contracting e, is the matroid represented by M".
(Note that .#/e depends only on .# and e, not on M, nor on M’
Moreover note that if m, =0 then # \e=.#/e.)

Minors. A minor of . is a matroid obtained from .# by a series of
deletions and contractions.

If M is a unimodular matrix of full row rank, then for the row operations
as meant in defining contraction, we can use unimodular row operations,
where scaling is restricted to multiplication by —1. Unimodular row opera-
tions preserve unimodularity. Hence the class of regular matroids is closed
under taking minors. In fact, we have:

TuTTE’s THEOREM [15]. Let M be a binary matroid. Then M is regular
if and only if M has neither F; nor F7* as minors.

A short proof of this theorem can be found in Gerards [5]. For“the
theory of regular matroids we refer to Bixby [1], Oxley [11], Schrijver
[12], Truemper [14], Tutte [15-17], and Welsh [18].
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We have already mentioned that unimodular representations can be
turned easily into binary ones. If a regular matroid is given by a binary
representation M, it may be—and in our case it is—useful to have a
representation over the reals (not necessarily unimodular) in which M is
still easily recognizable.

LemMa 1. Let M be a binary matrix. If M represents a regular matroid
U, then there exists a {0, +1} matrix M = M (mod 2) which represents M
over the reals. Moreover for each with Mx =0, there exists a {0, 1} vector
F=x (mod 2) with M%=0.

Proof. Assume M is an m x n matrix. Let M, be an m x r submatrix of
M with linear independent columns, where r denotes the rank of M over
GF(2). We may assume

(1) M=[M|M,]
Then .# is also represented by
(2) [1]1C] where C is uniquely determined by M, = M, C.

Let B be a unimodular representation of .#, such that B has full row rank.
Assume B=[B,|B,], where the columns of B, corresponds to the columns
of /in [I|C]. Then B, is nonsingular and M is representable over the reals
by

(3) [Z|B;'B,]=:[1|D].

It .is easy to see that [/|D] is unimodular too. Hence D is totally
unimodular. Moreover, as (2) and (3) represent the same matroid,

(4) D=C (mod2).

Now we use a well-known fact about totally unimodular matrices, due to

Ghouila-Houri [8]. Let k denote the number of columns of D, ie,
k=n-—r.

(5) For each vector xe GF(2) there exists an % e {0, +1}", with
¥=x(mod2)and X"De {0, +1}*

_(In fact (5) is equivalent with D being totally unimodular, but we only use
its necessity. Proving (5) is quite easy; cf. Schrijver [12, p. 269].)

Applying~(5) to the rows of M,, yields a {0, +1} matrix #,=M,
such that M, D is a {0, +1} matrix. The columns of A7, are linearly
mdependept. [Indeed, let M), be an rxr nonsingular submatrix of M,
and let M,, be the corresponding submatrix of A7,. Then det /7, =
det M, #0.] So we get that

| (6) M:=M,[I|D] is a {0, +£1} matrix representing .# over the
reals,
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and that
(7) M=M,[I1D]=M,[I|C]=M (mod 2).

Next we prove the second part of the lemma. Let x be such that Mx=0.
Hence x, + Cx, =0 with x™ = [x], x]]. Applying (5) to X, instead of x and
D" instead of D yields a {0, £1} vector %,=x, such that %, := —DZ%, is
a {0, £1} vector, too. Hence % :=[¥], ¥1] is a {0, +1} vector with %=

(51, %) =[—-%]D", £]1 = [—xICT, x11" = [x], x]]"=x (mod2) and

~ ~~

Remark. In fact, existence of M as in Lemma 1 is also sufficient for
regularity of /.

2.2. Signed Graphs

A signed graph is a pair (G, X), where G is an undirected graph and <
a subset of E(G). Edges in X are called odd; the other edges even. A circuit
in G is odd (even) if it contains an odd (even) number of odd edges. We
extend the notions odd-K, and odd-K3 to the setting of signed graphs. A
signed graph is an odd-K, or an odd-K? if it is of the form as depicted in
Fig. 1. Now the word odd in a face means that that face is bounded by a
circuit which is odd in the signed graph. Associated to a signed graph we
consider the binary matroid #(G, Z) which is represented over GF(2) by
the columns of the matrix

1 1r

S:: 0 ’
: Mg
0

where M denotes the node-edge incidence matrix of G. (Rows of M G
correspond to nodes of G; columns to edges.) y - denotes the charactenst}c
row vector of 2 as a subset of E(G). The special element of &(G, X) not in
E(G), corresponding to the first column of S, will be denoted b_y a..Note that
& (G, Z) does not depend so much on & but rather on which circuits are odFl
and which circuits are even with respect to 2. This means that (S”(G,‘E ) is
invariant under re-signing on U < V(G), i.e., replacing 2’ by the symmetric dif-
ference £ A5(U) of Z (8(U) := {uw e E(G)|ue U;v¢ U}). We want to apply
Tutte’s Theorem to the matroid &(G, 2). Hence we must know its minors.

Deletion of an edge. Deleting ee E(G) from &(G, ) amounts to just
deleting edge e from the graph G.

Contraction of an even edge. Contracting ec E(G)\2 in (G, 2)
amounts to just contracting edge e in the graph G.
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(@) (b)
F1G. 2. Bold edges are in 2.

Contraction of an odd edge (not being a loop). If e=uv is an
odd edge (with usv), then contracting e in ¥(G, X) corresponds to
re-signing (G, 2') on {u}, and then contracting the (now even) edge e in the
graph G.

Contraction of ¢ and of odd loops. F(G, X)/oc = M (G), the cycle matroid
of G. The same matroid results (upto isomorphism) when we contract an
odd loop in (G, ).

Deletion of 0. (G, X)\o is the even cycle matroid &(G, X) of (G, ).

LemMMa 2. Let (G, X) be a signed graph. Then (G, X) contains no odd-K,
and no odd-K? if and only if (G, X) has neither F, nor F¥ as a minor.

Proof. It is easy to prove that (G,ZX) contains no odd-K, and no
odd-K3 if and only if it cannot be reduced to any of the two signed graphs
in Fig.2 by deleting edges, contracting even edges, and re-signing.
Moreover, we have

— %(G, X) is isomorphic to F; if and only if (G, X) is the signed
graph in Fig. 2a.

— %(G, 2) is isomorphic to F* if and only if (G,Z) is (upto
re-signing) the signed graph in Fig. 2b.

— &(G, X) is isomorphic to F; if and only if (G, 2) is one of the two
signed graphs (a) and (b) in Fig. 3.

@QAQ@

FiG. 3. Bold edges are in L.
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‘—.é?(G, 2) is isomorphic to F¥ if and only if (G,Z2) is (upto
re-signing) one of the three signed graphs (c), (d), and (e) in Fig. 3.
From the above, the lemma easily follows. [
2.3. Proof

Observe that neither an odd-K, nor an odd-K? have an orientation of
discrepancy 1. Hence to prove the Orientation Theorem we may assume
that G contains no odd-K, and no odd-K?. Let #(G) := (G, E(G)), ie.,
&(G) is represented over GF(2) by

By Lemma 2 and Tutte’s Theorem &(G) is regular. Hence, by Lemma 1 it
can be represented over the reals by a matrix

where N is a {0, +1} matrix with No= M, (mod 2). That the top row
of S consists of ones only can easily be achieved by multiplying some of the
columns of § by —1.

CLAIM.  We may assume that each (nonzero) column of N has exactly
one 1 and one —1.

Proof. Let F< E(G) be a forest of maximum cardinality. Let N be the
submatrix of N consisting of the columns corresponding with the edges in
F. As F is a forest, we can multiply some of the rows of N; by —1 such
that each column of N has one 1 and one —1. Doing so, the rows of Np
sum up to 0. However, as F is a maximal forest in G and as N represents
the cycle matroid .#(G) of G over the reals, the columns in N span all the
columns in Ny. Hence, the rows of Ny sum up to 0, which proves the
claim. §

Define an orientation of G as follows. We replace each edge ue E(G) by
a directed arc. It will be directed form u to v if the entry'of Ng in the row
corresponding with u and the column corresponding with uv is —1. We
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claim that the orientation of G thus obtained has discrepancy 1. To see this
let C be a circuit in G. Let ye GF(2)!' Y59 be defined by y.=1 if
ecE(C); y.=0ife¢ E(C); and y,=1if and only if C is odd. Then Sy =0.
Hence, by Lemma 1 there exists a je{0, +1}{“ 59 such that j=y
(mod 2) and 87 =0. But this means that the discrepancy on C is equal to

Z yz:’_fo’:o’ il’

ee E(C)

which proves the Orientation Theorem.

3. PROOF OF THE UNIQUENESS THEOREM

We need two lemmas. If G is an undirected graph and D an orientation
of G, we denote the length of a shortest path between nodes ¥ and v in G
by dg(u, v). The length of a shortest directed path from u to v in D is
denoted by dp(u,v). Given a node u in G we call D u-conformal if
dg(u, v) <dg(u, w) < dg(u, v) + 1 for each arc oW e A(D).

Lemma 3. If D has discrepancy 1 and u is a node in D, then D is
switching equivalent with a u-conformal orientation.

Proof. Let G be connected and u be a node of G. Clearly, any orienta-
tion is switching equivalent with an orientation in which each node is
reachable from u by a directed path. So, let us assume that D is an orienta-
tion of discrepancy 1 which already has that property. Then D contains a
spanmng tree T which only uses arcs xy satisfying dy(u, y)=dp(u, x)+ 1.
Let uw € A(D) and let P be the path in 7T with endpoints v and w. On P,
going from w to v, the number of forward arcs minus the number of back-
ward arcs is dp{u, v) —dp(u, w). Hence the circuit composed by ow and P
has discrepancy 1 + dp(u, v) — dp(u, w). So for each arc w € A(D) we have
dp(u, v)<dp(u, w)<dp(u,v)+1 (the second inequality follows just
because ow e A(D)). From this it is not hard to see that d,(u, v) = dg(u, v)
for each node v. So the lemma follows. [

Let G be an undirected graph and X a subset of E(G). We call a circuit
C ef-linking (with respect to X) if e, fe E(C) and E(C)nX< {e, f}. We
define an auxiliary graph Gy by V(Gy) := E(G) and ef € E(G) if there exist
an ef-linking circuit with respect to X.

LEMMA 4. Let G be a 2-connected graph and X < E(G). If E(G)\ZX' is a
spanning and connected subgraph of G, then the subgraph of Gx induced by
the nodes in X is connected.
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Proof. Tt is easy to see that if ef, fge E(G5) and f¢ X, then ege E(Gy).
So we only need to prove that G itself is connected. i

G is 2-connected, so for each pair of edges in G there exists a circuit
containing both these edges. Hence, the lemma follows from:

(8) If C is a circuit in G, then all edges of C lie in the same
component of G ;.

Assume (8) is wrong; let C be a counterexample with |E(C) N Z| as small
as possible. Clearly, |E(C)n 2| >2. As E(G)\Z is spanning and connected
in G, there exist an st-path P with E(P)< E(G)\X and V(C)n V(P)=
{s, ¢}, where s and ¢ lie in different components of C\Z. Let C, and C, be
the two circuits formed by P and an st-path in C. As |E(C,)n Z|,
[E(C)nZ| < |E(C)nZ| and E(C,)nE(C,)# &, all edges of C, and
C, belong to the same component of G,. Hence so do the edges of
C—contradiction! J

Proof of the Uniqueness Theorem. Let G be an undirected graph with
an orientation D of discrepancy 1. We may assume that G is 2-connected.

Let u € V(G). By Lemma 3, we may restrict ourselves to the case that D
is u-conformal. We define X, := {vwe E(G)|dg(u, w) =dg(u, v)}. We call a
u-conformal orientation D nicely u-conformal if for each pair of edges e and
fin X, and for each circuit C that is ef-linking with respect to X, the arcs
in D corresponding with e and f are oriented in the opposite direction
along C. In a u-conformal orientation we have that on each path with
endpoints v and w and containing no edges in Z, the number of forwardly
directed arcs minus the number of backwardly directed arcs is —dg(u, v) +
dg(u, w) (going from v to w). Hence:

(9) A u-conformal orientation of discrepancy 1 is nicely u-conformal.

Define the u-conformal orientation D~ obtained from D by reversing the
direction of all the arcs in ~,. By Lemma 4, D and D~ are the only nicely
u-conformal orientations. Hence, to complete the proof of the Uniqueness
Theorem it suffices to show that they are switching equivalent. To see that,
observe that the arcs in A(D)\Z, form a cut which is the disjoint union of
directed cuts. Switching D on these directed cuts, followed by total
switching yields D~. i

4. FINDING AN ORIENTATION OF DISCREPANCY 1

The Orientation Theorem naturally rises the question for the polynomial
solvability of the following problems:

Discrepancy-1: Given a directed graph D, decide whether or not it
has discrepancy 1.
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Orientability: Given an undirected graph G, decide whether or not it
has an orientation of discrepancy 1.

Orientation: Given an undirected graph G, find an orientation of
discrepancy 1 or decide that G has no such orientation.

LemMa 5. Discrepancy-1, Orientability, and Orientation are polyno-
mially equivalent.

Proof. Let ue V(G) and let D be a nicely u-conformal orientation. We
call a collection C,, (i=1, .., k) of e, f-linking circuits a linking circuit
basis for u if e, fi, .., e, fr form a spanning tree in the subgraph of Gy,
induced by Z,. We call a u-conformal orientation nice with respect to a
given linking circuit basis C,  (i=1, .., k) if for each i=1, .., k, e; and f;
have opposite orientation along C,. In the previous section we have seen
that each u-conformal orientation of discrepancy 1 is nice with respect to
any linking circuit basis. Conversely, a u-conformal orientation which is
nice with respect to some linking circuit basis has discrepancy 1 if and only
if the underlying undirected graph has an orientation of discrepancy 1.

It is not hard to see that given u and a linking circuit basis for ©, we can
construct in polynomial time a u-conformal orientation which is nice with
respect to the linking circuit basis. Similarly, it is easy to check in polyno-
mial time whether a given orientation can be switched to a w-conformal
orientation that is nice with respect to a given circuit basis.

From all this, we easily conclude that the three problems are
polynomially equivalent. [

The relation between the three problems above as well as the Uniqueness
Theorem corresponds—not surprisingly—with a similar situation for
totally unimodular matrices (cf. Schrijver [12, p.249]). In fact, the
phenomena described here can be derived from their counterparts in the
case of totally unimodular matrices.

Classes of graphs with no odd-K, and no odd-K? are:

— graphs that contain a node that is in each odd circuit in the graph;

— graphs that can be embedded in the plane such that all but two
faces are bounded by an even circuit.

[t is not hard to see that each of the graphs described above have an orien-
tation of discrepancy 1. In [6] (cf. Gerards [7, Thm. 3.2.6]), it is proved
that any graph with no odd-K, and no odd-K3 can be decomposed into
graphs of the above described two types. This yields not only a proof of the
Orientation Theorem (different from the one given in Section 2) but also a
polynomial-time algorithm for Orientation and hence also for Discrepancy-1
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and Orientability. This decomposition result for graphs with no odd-K,

and no odd-K3 follows from Seymour’s decomposition theorem for regular
matroids [13].

5. APPLICATIONS OF THE ORIENTATION THEOREM

In this section we mention two applications of the Orientation Theorem.
5.1. Stable Sets

Let G be an undirected graph with no odd-K, as a subgraph. Then the
following min-max relation holds:

(10) The maximum cardinality of a stable set in G is equal to the
minimum “cost,”

k+3(E(COI=1)+ - +3(1E(C,) = 1),

of a collection of edges e, ..., ¢;, and odd circuits C, ..., C,,, such that each
node in G is on one of the edges or on one of the odd circuits in this
collection [4].

Note that this min-max relation extends Konig’s min-max relation for
stable sets in bipartite graphs [9, 10]. The proof of (10) as given in
Gerards [4] strongly relies on the orientation theorem stated above. In
case G contains no odd-K, but does contain an odd-K? the graph G is not
3-connected ([6]; cf. Gerards [7]). In that case an inductive argument is
used. In case G has no odd-K? the orientation of discrepancy 1 makes it
possible to reformulate the “covering by edges and odd circuits problem”
in (10) into a circulation problem. Through this reformulation the
min-max relation above easily follows.

5.2. Homomorphism and Colouring

Let G and H be undirected graphs. We say that G maps into H if there
exists a map ¢ (called a homomorphism) from V(G) to V(H) such that
¢(u) $(v) € E(H) for each uve E(G). For instance G maps into a clique of
size k if and only if G is k-colorable.

Let C be an odd circuit. When does G map into C? It is easy to see that
a necessary condition is that G contains no odd circuits shorter than C.
Generally this condition is not sufficient. For instance, the clique on four
nodes does not map into the triangle. However, in some cases the necessary
condition is sufficient as well.

THEOREM [3]. Let G be an undirected graph containing neither an
o0dd-K, nor an odd-K?*. Then G maps into its shortest odd circuit.
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Proof. (Alexander Schrijver. An elementary but more complicated
proof, independent of the Orientation Theorem, is given in Gerards [3].)
Let D= (V(G), A(D)) be an orientation of G of discrepancy 1. For each arc
in A(D) going from u to v we add a new arc going from v to w. The collec-
tion of these reverse arcs is denoted by R(D). So if we denote an arc from
u to v by w, then R(D) := {w |ou € A(D)}. We define the directed graph
D+ as follows: V(D*):=V(D)=V(G), and A(D*):=A(D)u R(D). On
A(D*) we define a length function w by

{k+1 if aeA(D)

YOS{k it acRD).

As A(D) has discrepancy 1, and as G has no odd circuits containing less
than 2k+ 1 edges, no directed circuit in D™ has negative length with
respect to w. Hence there exists an integer valued function n on
V(D*)=V(G) satisfying

n(v)—n(u)<w(w) foreach woeA(D*).

Indeed, fix uqe V(G). With w as length function let, for each ue V(G), n(u)
be the length of the shortest directed path from u, to u. Then = satisfies the
inequalities above. Hence we have

k<|n()—n(u) <k+1 for each wve E(G).
So

|27(v) —2n(u)| = +1 (mod 2k + 1) for each uv € E(G).

Assume the nodes of the circuit C are labeled vy, ..., vy, ; (in cyclic order).
For each ueV(G), let l(u)e{l,.,2k+1} be such that I(u)=2n(u)
(mod 2k + 1). Then the function f defined on V(G) by f(u) :=wvy,, for each
ue V(G), maps G into C. |}

An easy corollary of this result is that graphs with no odd-K, and no
o0dd-K} are 3-colorable (as each odd circuit maps into the triangle). In fact,
as has been proved by Catlin [2], graphs with no odd-K, are 3-colorable.
Catlin’s result follows now easily because graphs with no odd-K, but with
an 0odd-K3 have a 2-node cutset ([6]; cf. Gerards [7]), so admit an
inductive argument.

6. A DUAL VERSION OF THE THEOREM
Andras Frank posed the question whether there exists a dual version of

the orientation theorem, where “circuits” are replaced by “cuts.” Indeed
such a result exists. We state it here without proof (cf. Gerards [7]).
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Let G be an undirected graph. We call a subset U of V(G) elementary if
both U and V(G)\U induce connected subgraphs of G. U is called odd if
there are an odd number of edges leaving U.

THEOREM. Let G be a connected graph. Then (i) and (ii) below are
equivalent:

(i) G has an orientation D such that each elementary subset U of
V(G) satisfies

||{uf € A(D)|ue U, v¢ U}| — |{us e A(D)|u¢ U,ve U} | < I;
(i1) neither one of the following holds:

() V(G) can be partitioned into odd elementary subsets U,, U,,
Us, and U,, such that every pair among U,, U,, Us, and U,, is connected
by an edge in G.

(b) V(G) can be partitioned into elementary subsets U,, U,, U,
Vi, and V,, such that U,, U,, and U, are odd and every pair U, V, is
connected by an edge in G.

Remark. Note that if G is planar, then the equivalence of (i) and (ii)
above easily follows from the Orientation Theorem by planar duality.
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